geometric periodicity - определение. Что такое geometric periodicity
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое geometric periodicity - определение

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

Geometric art         
  • ekphora]]'', the act of carrying a body to its grave. National Archaeological Museum, Athens
PHASE OF GREEK ART CHARACTERIZED BY GEOMETRIC MOTIFS IN VASE PAINTING, FL. CA. 900–700 BCE, CENTRED IN ATHENS AND SPREAD AMONG AEGEAN TRADING CITIES
The Geometric Period; Geometric Greek art; Geometric Style; Geometric style; Geometric Period; Geometrical period; Geometric pottery; Geometric Art; Geometric vase painting; Geometric period; Geometric periods; Middle Geometrical
Geometric art is a phase of Greek art, characterized largely by geometric motifs in vase painting, that flourished towards the end of the Greek Dark Ages, . Its center was in Athens, and from there the style spread among the trading cities of the Aegean.
geometric progression         
SEQUENCE OF NUMBERS WHERE EACH TERM IS FOUND BY MULTIPLYING THE PREVIOUS ONE BY A FIXED, NON-ZERO NUMBER
Geometric Progression; Larn-1; Geometric sequences; Geometrical progression; Geometric sequence; Finite geometric series
(also geometric series)
¦ noun a sequence of numbers with a constant ratio between each number and the one before (e.g. 1, 3, 9, 27, 81).
Geometric progression         
SEQUENCE OF NUMBERS WHERE EACH TERM IS FOUND BY MULTIPLYING THE PREVIOUS ONE BY A FIXED, NON-ZERO NUMBER
Geometric Progression; Larn-1; Geometric sequences; Geometrical progression; Geometric sequence; Finite geometric series
In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ...

Википедия

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.